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Prediction of strength of recrystallized

siliconcarbide from pore size measurement

Part II The reliability of the prediction
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The distribution of the pore sizes was measured for more than hundred specimens with an
total area of 16000 square millimeters of recrystallized siliconcarbide specimens, from
which the bending strength values were known. The parameters of the Weibull distribution
of the strength were predicted from the distribution of the pore sizes. The reliability of the
prediction was calculated by taking out arbitrary subsets of these specimens,
corresponding to sub-areas of the total area, and investigating the statistical distribution in
dependence on the size of the pores in these subsets. The so obtained mean and the
variation coefficient were compared to the results from the mechanical bending tests.
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1. Introduction
To describe the fracture behaviour of brittle materials,
the Weibull distribution has been widely used [1–3].
The strength values obey a Weibull distribution, if the
number of the pores decreases with increasing pore
length according to a power law [2, 3]. Thus, the sta-
tistical distribution of the flaw dimensions is closely
connected to the fracture stresses obtained by mechan-
ical tests. This relationship has been used to predict
either the distribution of flaw sizes from fracture exper-
iments [4–8] or to predict fracture stresses from pore
size distributions [9–15]. For practical use, the relia-
bility of the measurements is of great interest. For me-
chanical tests, this has been investigated in the past
years. Most works dealt with the precision and the bi-
asing of the measurement of the scale parameter and the
Weibull modulus, most of them using computer simu-
lation of experiments [16–22]. If a material perfectly
obeys the two-parametric Weibull distribution and its
Weibull parameters are known, the reliability of the
measurement can be analytically calculated in depen-
dence on the number of experiments performed [23].
For an unknown Weibull parameter, the functional be-
havior is similar and the variation coefficients of the
scale parameter and the modulus were given by simple
approximative equations [23] obtained from computer
simulations. If a material does not show an unimodal

but a bimodal distribution, which is often the case in
practice, this considerably increases the variation co-
efficient of the modulus, but only sligthly affects the
scale parameter, as had been verified for recrystallized
siliconcarbide (RSiC) [24].

The method proposed in [24] based on a large num-
ber of mechanical bending tests considered as the fun-
damental set, from which arbitrary subsets were taken
out. The statistical distribution of these subsets, i.e. the
mean and the variation coefficient, was investigated in
dependence on the size of the subsets, i.e. the number
of experiments performed [23, 24].

Now this method is applied to calculate the reliabil-
ity of the prediction of the Weibull parameters of the
bending strength by a non-destructive measurement of
the pore size distribution. The pore size distribution
determined from the area of all specimens is consid-
ered as the fundamental set. From this fundamental
set arbitrary subsets are taken out (representing smaller
amounts of area measured) and the Weibull parameters
predicted from these areas are calculated. The statisti-
cal distribution of these predicted Weibull parameters
is then compared to the results obtained from the me-
chanical bending tests. The knowledge of the applica-
tion and the limits of this non-destructive method could
be important for the development of automatic quality
control during industrial processing.
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2. Materials and methods
Recrystallized siliconcarbide (RSiC) is a material con-
sisting of a nearly perfect stochiometrical ratio of sili-
cone and carbide and is therefore nearly free of second
phases, which are usually required as a sintering aid.
This results in a high creep resistance. Together with
the high thermal conductivity and the low coefficient
of expansion this material is especially designed for
the use as kiln furniture. A short description of the ma-
terial may be found in [15], a precise description of
processing and texture in [25].

To determine the pore size distribution, 123 speci-
mens were polished and data about the shape and the
size of the pores were collected by digital image pro-
cessing in the optical microscope. Thus, a total area of
more than 16000 square millimeters was measured.

The validity of linear elastic fracture mechanics
(LEFM) was assumed and the frequency distribution of
pore sizeg(a) should decrease with an inverse power
law with an exponentr and a scaling pore sizeasc. Then
the fracture probabilitiesPf are Weibull distributed with
an exponentm and a scaling parameterσ0 [1, 2]:

g(a) = g(asc)

(
a

asc

)−r

→

Pf = 1− exp

(
−
(
σ

σ0

)m)
(1)

By this, the parameters of the pores (g(a0), r ) and the
ones of the strength (σ0, m) are related by [2, 3]

m= 2 (r − 1) and σ0 = (m/(2ascg(asc)V0))1/m

× K lc
/(

Y(πaac)
1/2), (2)

whereV0 is the effective volume,K lc the fracture tough-
ness andY the shape factor. There are three problems,
which have to be solved:

• Firstly, the determination of the fracture toughness
K lc. In this work it was measured by an independent
procedure (single edge notched beam, notched by
a diamond blade with a thickness of 50 microns,
resulting in a notch radius of about 30 microns).
Five tests were performed according to the German
prestandard DIN 51109. The fracture toughness
turned out to be 2.05± 0.1 MPa

√
m. A compar-

ison of this test method to others could be found in
literature with data obtained by a round robin test
for five different brittle materials [26].
• Secondly, the shape factor has to be determined.

This problem was treated in [15].
• Thirdly, the frequency distribution has to be

known. In [15] the way to calculate the volume
distribution from the measured surface distribution
was discussed. In this work, the influence of a mea-
surement of different amount of areas and the in-
fluence of a pore size distribution, which does not
perfectly obey the power law (Equation 1) are in-
vestigated.

To calculate the statistical behaviour, histograms
were built: The number of pores was collected in bins
with an interval length of 50 microns. The number
of pores of all specimens was seen as a fundamental
set, from which arbitrary subsets (consisting of 5, 10,
20,. . . , up to 100 specimens) were chosen by a ran-
dom procedure. They represent measurements of the
number of pores of smaller areas. By dividing this
number through the respective measured area, the cor-
responding frequency distribution is obtained, from
which the Weibull parameters can be calculated ac-
cording to Equation 1. This procedure is repeated some
thousand times and the statistical behaviour of the so
obtained Weibull parameters is investigated. Despite
the biasing of the Weibull distribution, a symmetric de-
scription with mean and variation coefficient is chosen
for clarity. The dependence of the predicted mechan-
ical parameters on the size of the subsets, i.e. the re-
spective measured area, has the following importance:
The knowledge of the reliability of the method, i.e. the
amount of area required to obtain a certain accuracy
of the predicted mechanical strength, is important in
practice for a use of this method for automatic quality
control in industrial processing.

The mechanical parameters predicted from the pore
size measurements were calculated by taking into ac-
count the different shape factors from the surface and
the volume pores [15], which result in a bimodal distri-
bution of the mechanical strength values. This bimodal-
ity has been mainly investigated for ceramic fibres [27–
31] and not for ceramics. The reason is probably that
due to the high scatter of ceramic materials a bimodality
could only be seen as statistically significant, if a very
large number of mechanical data would be available.
This, however, needs a lot of effort and costs.

The predictions by the pore size measurements were
compared to results obtained from a bimodal Weibull
fit of the mechanical tests using the equation [27, 31]

Pf = 1−
[

(1− α) exp

(
−
(
σ

σ01

)m1
)

+α exp

(
−
(
σ

σ02

)m2
)]

(3)

as well as to results using the unimodal fit (Equation 1).

3. Results and discussion
Fig. 1 shows the histogram of the frequency distribution
in dependence of the size of the pores (the number of
pores was counted in bins with a interval length of 50
microns). It can clearly be seen that the decrease in
the frequency distribution does not perfectly follow the
inverse power law as proposed in Equation 1.

Because the parameters of the frequency distribution
were obtained by a fit of the experimental values for
large pores, the choice of the upper and lower limiting
points for the fit (“upper” and “lower” with respect to
the number of pores) influences the resulting param-
eters of the Weibull distribution. The lower limiting
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Figure 1 Number of pores counted in the light microscope (right scale)
and normalized to area (left scale).

point, because the restricted number of pores of very
large size leads to an increase in the scatter. The upper
limit, because the slopes, which are necessary to calcu-
late the Weibull modulus, decrease as a consequence of
the curvature of the frequency distribution. Fig. 2 shows
the influence of a variation of the limiting point at large
pore sizes (lower limit). The lower limiting point for
the fit varied from 3 to 45 pores, which is equivalent
to a lower cut length varying from 1450 to 1050 mi-
crons, and the upper limiting point was kept fixed at 850

Figure 2 Influence of the lower limiting point chosen for the fit on the resulting Weibull parameters. Symbols: values predicted from pore size
distribution. Lines: values measured by mechanical tests, evaluated by either unimodal (Equation 1) or bimodal (Equation 3) Weibull distributions.

Figure 3 Influence of the upper limiting point chosen for the fit on the resulting Weibull parameters. Symbols: values predicted from pore size
distribution. Lines: values measured by mechanical tests, evaluated by either unimodal (Equation 1) or bimodal (Equation 3) Weibull distributions.

microns. The choice of this lower limiting point only
slightly affects the calculated mechanical parameters.
The symbols in these diagrams indicate the predictions
from the pore size distributions and the lines the data
from the mechanical tests for comparison, respectively:
In the left diagram the scale parameterσ0 from the bi-
modal fit for the volume pores according to Equation 3
is shown as solid line, from the unimodal fit according
to Equation 1 as dashed-double dotted line, whereas the
right diagram exhibits the corresponding results for the
Weibull modulus.

Contrary to this, the effect of a variation of the up-
per limiting point of the fit is relatively large, which
is a consequence of the increasing curvature of the fre-
quency distribution. In this diagram, the lower point was
kept fixed at 1300 microns and the upper limiting point
was varied from 450 to 1000 microns (corresponding
to a number of 3200 to 67 pores measured). There
seems to appear a plateau value for the fit of the scale
parameter.

The first of these plateau values was used in all fol-
lowing calculations for the investigation of the statis-
tical behaviour. This chosen interval for the fit ranged
from 800 to 1300 microns, corresponding to a measured
pore number of about 300 to 10, respectively. The in-
tention was on the one hand that the number of pores
for the fit should be as high as possible, in particular for
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Figure 4 Comparison of predicted strength from pore size measure-
ments (circles: scale parameter of volume pores, squares: scale parameter
of surface pores) to the results obtained from the mechanical tests: Solid
line: bimodal fit, volume pores, dotted line: bimodal fit, surface pores,
dashed-double-dotted line: confidence interval of unimodal fit (mean
plus minus one standard deviation).

Figure 5 Comparison of predicted Weibull modulus from pore size mea-
surements (diamonds) to the results obtained from the mechanical tests:
Dashed line: bimodal fit, dashed-dotted line: confidence interval of uni-
modal fit (mean plus minus one standard deviation).

the reliability of predictions of smaller areas measured.
On the other hand statistical arbitrariness, which occurs
if the number of pores counted approaches one, should
be excluded. Additionally, the fact that from Griffith
theory pore size should be in this range confirms the
choice of this interval for the fit. Figs 4 and 5 show
the main results: The statistical distribution (i.e. mean
and standard deviation) of the predicted values obtained
from pore size measurements are shown in dependence
on the number of specimens, which correspond to the
area required for a certain precision. From each speci-
men about 130 square millimeters of polished surface
were measured. The decrease in the standard deviation
of the strength prediction with increasingly measured
pore sizes is obvious. The mean of the predicted scale
parameters for both volume and surface pores coincides

well with the mechanical tests. It should be noted that
the reliability of the Weibull parameters from mechani-
cal tests is also limited. This has only been investigated
for unimodal Weibull distributions [23]. Therefore, the
confidence interval in Fig.4 characterises the unimodal
scale parameter range for the mechanical tests, i.e. the
mean of the scale parameter plus minus one standard
deviation. This interval is similar to the scatter of the
pore size predictions, i.e. mechanical testing of a spec-
imen and measuring its pore size distribution lead to a
comparable scatter.

The corresponding results for the Weibull modulus
are depicted in Fig. 5. The bimodal fit of all bending
tests showed a Weibull modulus of 16.1, whereas the
unimodal fit resulted only in 9.8. The modulus pre-
dicted from pore size measurements lies in between,
with a value of 13.4. The dashed-double dotted line
characterises the confidence interval (mean plus minus
one standard deviation) for the respective number of
specimens from the mechanical tests. This confidence
interval was calculated for a material, which perfectly
obeys a Weibull distribution [23]. In the case of a bi-
modal behaviour, the variation coefficient of the mod-
ulus is significantly higher and could be twice the one
of an unimodal distribution [24]. Therefore, one might
conclude from Fig. 5 that the scatter of the predictions
of the Weibull modulus from pore size measurements
seems to be lower than that of the mechanical tests. The
situation is, however, complicated by the bimodality in
the fracture strength distribution. A bimodal fit of the
mechanical data results in two narrower distributions
(with higher Weibull modulus) than the description by
an unimodal distribution, whereas the predicted value
from pore size measurements lies in between. A pos-
sible explanation could be that the model is too sim-
plified or the number of large pores observed was not
sufficient. Another plausible explanation could be that
not all pores have the same shape, which influences the
geometry factor in the fracture criterion.

However, considering the large possible scatter, the
coincidence could be seen as satisfactory. Due to the
high scatter in measuring the Weibull modulus, one
should always be careful in interpreting the results, ob-
tained from either mechanical or non-destructive test-
ing. A complete description of the mechanical behav-
iour of ceramics can only be based on extensive
statistics.

4. Conclusion
In the frame of this work it was shown that there ex-
ist limits in the possibility to predict the strength of
the porous material RSiC by pore size measurements.
One limit is that the number of pores does not per-
fectly obey an inverse power law in dependence on the
pore size. The second is that due to the high costs the
amount of area, which could be measured, is certainly
limited. Both increase the scatter in the prediction of
the mechanical parameters in comparison to mechani-
cal testing. The mean and the standard deviation of the
predicted parameters are investigated and compared to
the ones obtained from mechanical tests. The predicted
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scale parameter for the volume and the surface pores
coincides well with the one calculated by a bimodal
Weibull fit of the measured strength data, and the scatter
of the mechanical tests and the non-destructive pore size
measurement is comparable. Higher deviations were
observed for the Weibull modulus, where the scatter
was comparable, but the pore size measurement pre-
dicted a value for the modulus, which was in between
the bimodal and the unimodal fit of the mechanical
data. This might be due to several simplifications of the
model, a non sufficient statistics of the distribution of
large pores or a size-dependent geometry of pores. But
the increasing development of suited methods to au-
tomatically determine three-dimensional pore size dis-
tributions and the subsequent digital image processing
offers a lot of possibilities for automatic control during
industrial processing and seems to be of great practical
interest in future.
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